Saturday, May 06, 2006
Today we learn about the marvels of probability
I feel like I should understand this after sixteen years of math classes. But I still have no clue why this should be so.
I do know, however, that if we were doing this in binary, the probability of a leading 1 is about 100% or so, which is probably why it's never come up in my classes :-).
I do know, however, that if we were doing this in binary, the probability of a leading 1 is about 100% or so, which is probably why it's never come up in my classes :-).
Even more astonishing are the effects of Benford's Law on number sequences. Intuitively, most people assume that in a string of numbers sampled randomly from some body of data, the first non-zero digit could be any number from 1 through 9. All nine numbers would be regarded as equally probable.
But, as Dr. Benford discovered, in a huge assortment of number sequences -- random samples from a day's stock quotations, a tournament's tennis scores, the numbers on the front page of The New York Times, the populations of towns, electricity bills in the Solomon Islands, the molecular weights of compounds the half-lives of radioactive atoms and much more -- this is not so.
Given a string of at least four numbers sampled from one or more of these sets of data, the chance that the first digit will be 1 is not one in nine, as many people would imagine; according to Benford's Law, it is 30.1 percent, or nearly one in three. The chance that the first number in the string will be 2 is only 17.6 percent, and the probabilities that successive numbers will be the first digit decline smoothly up to 9, which has only a 4.6 percent chance.
A strange feature of these probabilities is that they are "scale invariant" and "base invariant." For example, it doesn't matter whether the numbers are based on the dollar prices of stocks or their prices in yen or marks, nor does it matter if the numbers are in terms of stocks per dollar; provided there are enough numbers in the sample, the first digit of the sequence is more likely to be 1 than any other.